Design of Real-Time Large Scale Robot Software Platform
and its Implementation in the Remote-Brained Robot Project

S.Kagami

Y.Tamiya

M.Inaba H.Inoue

Dept. of Mechano-Informatics,
Univ. of Tokyo,
7-3-1 Hongo Bunkyo-ku, Tokyo, 113 Japan

Abstract

Constructing an environment for robot software re-
search, which can program and ezperiment in various
robot behaviors, design of a software development plat-
form becomes important problem. This paper describes
a design of “Software Platform” for real-time large
scale robot software, and ils implementation in the
“Remote-Brained Robot Project”. The Software Plat-
form is designed as three layers, “MOTHER, BRAIN,
SENSOR-MOTOR”. MOTHER consists of tools to
produce and evolve BRAIN programs.

For tools and lLibraries in such platform, there are
two major problems. One is, there is tradeoff relation-
ship between “Extension” and “Share”. To overcome
this problem, one course line was denoted. The other
18, the methodology is needed between low-level real-
time parallel environment monitoring program and
high-level software that takes much time.

A system developed for remote-brained robots and
its application are described. This system aims at de-
veloping a many sorts of brain architecture and high
level software that consists of various flexible multi-
process network.

1 Introduction

“Remote-Brained Approach [1)” is a paradigm of
robot software research. In this approach, a robot
brain is left in the remotely placed computer, and a
robot body is connected to the brain through wire-
less link. In this paradigm, we could study intelli-
gent robot architecture through building (1) a large
scale and complex software such as learning, teaching,
modeling, simulating, and (2) their parallel software
environment.

Constructing such a system empirically from ex-
periment, many developers should improve its soft-
ware for the long term. Thus improvement process of
the software system becomes important for realizing a
real-world robot system.

In this paper, we propose “Software Platform” that
could be shared by human developers, and the system
itself evolves according to the top-level software. The
top-level software will be an application of this “Soft-
ware Platform”.

There are big robot systems that control robot body
from a large scale software such as vision process-
ing and world model matching (or such kind of real-

Proc. IROS 96
0-7803-3213-X/96/ $ 5.00 © 1996 IEEE

1394

world recognition program). (At the Hand-Eye sys-
tem, COSMOS [QE Handy [3], and at the Mobile-
Robot system, Navlab [4], Chatila [5], Yamabiko [6],
Polly [7], etc.) However, these systems are an environ-
ment that is designed to treat specified simple body
and its own task.

Recently according to the “Remote-Brained Ap-
proach”, we developed many types of robot body (such
as animal type and humanoid type) that has vision
and another sensor, and improved both its top-level
software [8-12] and its environment repeatedly. In this
paper, we arrange this problem, and denote (1) De-
sign of software platform for intelligent robot, (2) Sys-
tem composition problem of “share” and “extension”,
(3) Parallel environment monitor process system, (4)
Event-driven interface between top-level robot pro-
gram and low-level sensor process. Furthermore, an
implementation for the remote-brained robot system
and an experiment of adaptive behavior using hu-
manoid type robot are described.

2 Design of Software Platform for
Extensible Research Environment

2.1 Requirements of Software Platform

We define “Software Platform”, that is a system to
support robot brain program and provides (1) real-
time programming facility of parallel sensor process
and actuator control, (2) comnection between real-
time layer and non real-time layer, such as interface
libraries of sensor and actuator control, robot body
model libraries, robot action libraries and so on, (3)
tools for developing a robot brain program (such as
3D simulator, brain architecture software, etc.), and
(4) facility to customize itself according to evolution
of top-level software. Then, structure of “Software
Platform” is needed.

2.2 Structure of
Software Platform Environment

Tools or environment for developing a robot brain is
included in Software Platform. Therefore, we propose
a structure that has three layers, “MOTHER "(tools
or environment for developing a robot brain program),
“BRAIN” (top-level robot program), and “SENSOR-
?JOT?R” (sensor processing and actuator control).
Fig.1



rRobot Software Components

~
—MOTHER
Mother Tools————
Developers 3D simulator
or ing Facility
Brain (ohavior Nemwork. Dynainic Action
Generator Sclection, Parallel Production System)
[ Mother Faciiity intertace |
_ N.
B. b Brain Libraries———
Brain Program Action Unit
3D solid model
(Perception-Action Mulfi-robot Communication Facility
Connection) Real-Time Sensor Data Acquisition
| s Motor Facllity Int ]
-SENSOR-MOTOR sor-Motor Librart
Sensor-M Paralle] Processing Manage:
Parallel Process Daia Communication R
18100
Network Acwmrlbcr:;ytroller
L J

Figure 1: Robot Software Components

MOTHER is the environment to produce and
evolve a BRAIN program (that generates robot be-
havior). This layer consists of two parts, (1) one is
tools for developer to make robot motion or behav-
ior, such as GUI or teaching tools, and (2) software
to generate a robot behavior, such as 3D simulator,
learning software, and brain software architecture li-
br SSA [13], BeNet [14], Dynamic Action Selec-
tion [15], Parallel Production System, State Transition
Network, etc.).

The top-level software for robot behavior is placed
at BRAIN. BRAIN contains robot behavior library,
3D solid model library of robot body or environment,
multi-robot communication facility and so on.

SENSOR-MOTOR contains parallel sensor process
and actuator control facility. Since this part generally
consists of numbers of processors, parallel processing
facility, task distribution handler, and inter-processor
data communication are needed.

2.3 Tradeoff Problem of
“Share” and “Extension”

When constructing a large scale software, “Share”
and “Extension” become an important problem, how-
ever ordinary they have tradeoff relationship. Gen-
erally, object-oriented programing is used to enhance
level of the “Share”. Often object classes of fundamen-
tal facility are created, and gather them to construct
a general class that is inherited many basic objects
together and that has every “Method” of its parents
and every “Slot Variable”.

Nevertheless, changing a method function or slot
variable exerts a strong influence not only to the ob-
ject itself but also to all the class hierarchy system (all
of its descendants). Thus creating a generic class ob-
ject that inherits many fundamental class objects, is

1395

the possibility of causes to increase maintenance and
management time. Furthermore, at group develop-
ment, changing a basic object class is make stop to
the top-level software development, then parallel de-
velopment becomes impossible.

Then to balance “Share” with “Extension”, class
hierarchy of SENSOR-MOTOR layer should be flat
and should not construct a generic class since this layer
consists of numbers of processors and each library fa-
cility should work in parallel. On the other hand, class
hierarchy of BRAIN layer is ordinary way.

2.4 Parallel Peripheral Monitoring
Process

For BRAIN level (top-level) software, these three
things are important.

¢ Facilities of sensor and actuator must be con-
trolled transparent and flexible,

o Overhead of its system must be permissible and
getting the sensor process results must be in real-
time

) Corr,espond to the top-level parallel program.

To realize a robot that behaves in real-world, two
types of sensing facility are needed for the SENSOR-
MOTOR part.

1. Sense designated sensor and return result,

2. Monitor peripheral (For example : tracking a tar-
get on vision process) and return results continu-
ously.

(1) is the sensing process that senses after top-level
process has designated, and returns its result. (2) is
the sensing process that senses regularly which had
designated beforehand, and returns the results when
the top-level program requires. The latter helps to
raise the system reactivity. Since SENSOR-MOTOR
is constructed from a multi-processor network, par-
allel sensor library, task distribution handler, inter-
processor data communication facility and real-time
sensor result trasmit facility are needed.

2.5 Interface Between
BRAIN and SENSOR-MOTOR

There are two methods to return results of environ-
ment monitor process to the BRAIN (top-level) pro-
gram.

1. Top-level program “asks” to SENSOR-MOTOR,
2. Sensor process sets the results to the top-level
program (“Event-Driven”).

“Ask” method has two defects, one is that it is
hard to process synchronously among sensor process
and top-level program. Amnother is that communica-
tion overhead occurs when plural top-level programs
refer to the results of one sensor process.

“Event-Driven” method enables many types of syn-
chronous processing. Fig.2 shows the above.



Top Level Processes
High Level Top Level Processes Top Level Processes O‘\() O D\
ata
Software O O ﬂ O O ﬂ \XT Buffer
\ ender
— — \Q.Exn.
e Command
Low Level / \ / — D g:;er Interpretcr( } O
/ \ Env. Monitor En(. l{lsnitor
Servo &
Si Sensor
Frocessors Sg'-v}Process F:mrms Q (P Q Frocemes I I ls’“fscsg;ses
(1) Process After Request (3) Event Driven Data Push

(2) Get Results from Buffer

Figure 2: The 3 Methods to Get Sensor Process Results

3 Implementation of Software
Platform for Remote-Brained Robot

3.1 Remote-Brained Approach

In “Remote-Brained” approach, a robot doesn’t
bring its own brain. A robot body has only actua-
tor, sensor, battery and wireless transmitter/receiver.
In this approach, brain and body of a robot are sepa-
rated physically and connected through wireless link.
There exist three layers, Brain, Body, and Interface
between Brain and Body. With this approach, many
advantages can be obtained to the research of intelli-
gent robot software. That is;

e Brain and sensor processors have no physical lim-
itations, '

e It is possible to make an independent body that
has many actuators (ex. humanoid type and
many types of legged robot),

e Each layer can be developped respectively on the
common interface,

e It is possible to exchange each layer,

o It is possible to share the brain and interface soft-
ware.

This paper describes the software platform for
Remote-Brained Robot system. Next section, each
layer of software platform is described.

3.2 Brain Development Tool in MOTHER

MOTHER layer is a software to produce and evolve
a BRAIN layer program (to appear [16]).

As tools for human developer, we are developing
(1) GUI that calculates robot posture and body in-
tersection, centroid and calculate robot view using 3D
modeler, (2) behavior editor to edit motion sequence,
and (3) automatic balancer to make humanoid type
robot stable.

1396

As tools for software, we are developing (1) brain
architecture library such as BeNet [14], Dynamic Ac-
tion Selection [15] and State Transition Network, and
(2) 3D dynamic simulator to learn body motion.

3.3 3D Solid Model Body Library in
BRAIN

Every robot body of remote-brained approach has
its 3D solid model on BRAIN layer as a library. Since
we adopted hobby radio control model parts as an ac-
tuator, and attached U-shaped parts to it, actuators
were standardized and we made a 3D model library.
We can make a body by connecting these parts, and
3D solid model of the body can be made of the same
kind. Using this library, top-level software can calcu-
late its intersection, centroid, path planning, and so
OLL.

3.4 Parallel Sensing Controller
for Environment Monitor Process
in SENSOR-MOTOR

Since SENSOR-MOTOR layer is composed of plu-
ral processors, Parallel Sensing Controller ’]QPSC is
needed to realize Environment Monitor. The PSC
distributes given process to appropriate processors,
and gather the results and send it to BRAIN Layer.
Servo&sSensor Processes of Fig.2(2)(3) are the sensor
processes that are started in parallel.

We developed a data communication router for
transputer network. This router consists of 6 paral-
lel processes and FIFO buffer. Each processor can be
communicated synchronously in spite of physical po-
sition on the network. This router doesn’t hang-up
unless FIFO buffer is overflow.

3.5 Event-Driven Interface
between BRAIN and SENSOR-MOTOR

" To get sensor process result using event-driven
mechanism, the cycle of sensor process and top-level



Sensor Process Brain Process

O—> FIFO Buffer [==—
Call
(1) FIFO
Sensor Process Brain Process

O_.

(2) Newest

Global Variables C:O O_/>
Read

Post Semaphore Brain Proce

EAS}(O
Wait
Semaphore

Sensor Process
O

(3) Block Newest

Global Variables

Sensor Process Interrupt Brain Process

—r-
Call

Global Variables

(4) Interrupt

Figure 3: Event-Driven Data Returning to Brain Program

program becomes a problem. We implemented four
methods (Fig.3),

1. Every results are transmitted (FIFO),

2. The Newest data are transmitted (Newest),

3. If the Newest data which have never transmitted
exist, they are transmitted when top-level pro-

am requests, otherwise block top-level program
Block Newest),

nterrupt top-level program when the result data
come in (Interrupt).

3.5.1 FIFO method

The FIFO buffer method transmits all of results from
sensor process to top-level program. It is only avail-
able when a cycle of top-level program is equal or
faster than sensor process. Otherwise (sensor pro-
cess is faster than top-level program), queue becomes
longer and FIFO buffer will overflow.

3.5.2 Newest method

This process overwrites the sensor process results, and
transmits it by the request of top-level program. Thus,
this method is available when a cycle of top-level pro-
gram is equal or slower than sensor process. Oth-
erwise (sensor process becomes slower than top-level
program), processing the same data will occur. The
implementation of the BeNet [14] adopts this method.

3.5.3 Block Newest method

Same as “Newest” method but to overcome the defect
of the same data processing, only the data that have
not passed to the top-level program are transmitted to
the top-level program. Otherwise, top-level program
is blocked until the fresh data arrive.

1397

3.5.4 Interrupt method

When the top-level program cycle is relatively slow
(such as model calculation or learning , etc.) and to
react real-world input, sensor process results cause in-
terruption in top-level program.

3.6 System Features

To implement for Remote-Brained robot system, we
designed

1. Top-level interface is implemented in Euslisp/MT
[17?, (Object oriented parallel lisp including 3D
solid modeler
SENSOR-MOTOR layer is constructed from plu-
ral transputer based vision boards (about 20
boards) that have special chip of correlation, and
data communication router is implemented,
. Sensor process result can be returned to the top-
level software using Event-Driven method,
Vision facility can be used transparently by an
object’s methods and slots, and their substance
is distributed for many processors. Their class
hierarchy is wide toward the end to get “exten-
sion”.
Multi-robot facility is implemented over an
TCP/IP network,

Fig.4 shows an overview of dataflow of our system.
Upper side is BRAIN layer and it shows components of
the experiment of humanoid type robot’s kicking be-
havior described the next section. (a) A Top-level pro-
gram calls SENSOR-MOTOR libraries (to be called
library object method), (b) command is transmitted
to SENSOR-MOTOR layer by the form of S expres-
sion, (¢) PSC decode the form and divide given task
to the processors by calling correspond function, (d)
sensor process results are seeded back periodically to



the top of SENSOR-MOTOR, (e[f) returning data is
seeded to Euslisp/MT by the form of S expression.

4 Adaptive Behavior Experiment by
Humanoid Type Robots

4.1 Humanoid Type Robot

According to the Remote-Brained Approach, we de-
veloped humanoid type robot body (called “Akira”).
This robot has 16 D.O.F. (4 in each leg, 3 in each hand
and 2 for neck), and it has TV camera in the head.
Video signal is transmitted using Broadcast Satellite
Channel (1.2GHz) to the SENSOR-MOTOR layer.

To develop a walking behavior, we implemented the
Automatic Balancer using body model library (upper
side of BRAIN layer in Fig.4g,. It checks the state
transition. The states have only two modes, (1) both
legs are attached to the ground, or (2) only one leg
is attached. While the state mode doesn’t change,
it changes body’s centroid to a designated point by
“Stabilizer”. Detecting the state to change, it gener-
ates motion from the old posture to the new posture
by “Basic Motion Generator”, and makes the robot
stable.

4.2 Task: Ball Kicking

We tried to realize a ball kicking behavior (Fig.5).
Initially, robot is placed about 500mm from the ball,
and after starting, it follows the ball and walks in
changing the direction until it reaches to the target.
After that, it starts kicking motion.

Since the direction of the head changes a lot in
walking motion, we control to keep looking for the
target by calculating a direction and balance in real-
time by “Posture Changer”. In Fig.4, double-framed
box shows libraries of BRAIN layer.

“Motion Selector” in Fig.4 gets tracking results
by FIFO method and selects motion out of walking
and turning. Reaching the ball, Motion Executer is
stopped by Interrupt method and kicking motion is
selected. “Posture Changer” gets data by Newest
method.

5 Summary and Conclusions

In this paper, we proposed the “Software Platform”
for real-time large scale robot software. The system
could be shared by human developers, and the system
itself evolves according to the top-level software. We
denote four problems of such system, (1) Design of
software platform for real-time large scale robot soft-
ware, (2) System composition problem of “share” and
“extension”, (3) Parallel environment monitor process
system, and (4) Event-driven interface between top-
level robot program and low-level sensor process.

Using this platform, we developed many sorts of
robot body (such as animal type and humanoid type)
according to the “Remote-Brained Approach”. Then
we improved both top-level software and its environ-
ment repeatedly. Total system consists of over 20,000
steps in Lisp (at MOTHER and BRAIN layers), and
over 8,000 steps in C (at SENSOR-MOTOR layer) ex-
cept top-level robot behavior programs. Furthermore,
an experiment of kicking behavior of humanoid type
robot are described.

1398

Basic Motion Generator—,
-
§ Motion Database
g el
" ( Motion } [ Motion
~ Selector Connector )]
é Newest 4“ (a) calt object’s
= method
, E Vision Interface | [ Action Intertace
Library Library
bl —
L (b)Sexp. WS
/ Transputer Network
R '—H (c) Call function
§ Gl 558
E. Buffer for Visi
s displa
= | @
A copy ! -
Z Manager Processor splay M
a \y
(d) Return resuits
3!
S
]
2
[
[

Figure 4: Dataflow between BRAIN and SENSOR-
MOTOR during ball tracking behavior

Find ball

Walk with
tracking
the ball

Figure 5: Ball Kicking Task



Figure 6: Ball Kicking Experiment by Humanoid Type
Robot '

References

(1]

2

(3]

Masayuki Inaba. Remote-Brained Robotics: Interfac-
ing Al with Real World Behaviors. In Proceedings
of the 6th International Symposium on Robotics Re-
search (ISRR6); Robotics Research. The MIT Press,
1993.

T. Ogasawara and H. Inoue. COSMOS : A total
programming system for integrated intelligent robot.
Journal of the Robotics Society of Japan, Vol. 2, No. 6,
pp. 507-525, 1984.

T. Lozano-Perez, et al. Handey: A Task-Level Robot
System. In Hideo Hanafusa and Hirochika Inoue, ed-
itors, Proceedings of {th International Symposium on
Robotics Research, pp. 29-36. Published as Robotics
Research 4, 1988.

[4] Charles E. Thorpe, editor. Vision and Navigation :

1399

(3]

(6]

7]

(8]

t

(10]

[11]

(12]

(13]

(14]

(18]

[16]

(17]

The Carnegie Mellon Navlab. Kluwer Academic Pub-
lishers, 1990.

Raja Chatila. Representation + reason + reaction —
robot intelligence. In Proceedings of 6th International

Symposium on Robotics Research (ISRR6), pp. 387—
397. MIT Press, 1993.

S. Suzuki, J. lijima, and S. Yuta. Design and Imple-
mentation of an Architecture of Autonomous Mobile
Robots for Experimental Researches. In Proceedings

of 98 ICAR, pp. 423-428, 1993.

L. D. Horswill. Polly: A vision-based artificial agent.
In Proceedings of AAATI 1993, pp. 824-829, 1993.

Masayuki Inaba, Satoshi Kagami, Fumio Kanehiro,
Koji Takeda, and Hirochika INOUE. Vision-Based
Adaptive and Interactive Behaviors in Mechanical
Animals using the Remote-Brained Approach. In Sub-
mitted to IEEE/RSJ International Workshop on In-
telligent Robots and Systems IROS 94, 1994.

Masayuki Inaba, Fumio Kanehiro, Satoshi Kagami,
and Hirochika Inoue. Two-armed bipedal robot that
can walk, roll-over and stand up. In Proc. of Int.
Conf. on Intelligent Robots and Systems, Vol. 3, pp.
297-302, 1995.

Masayuki Inaba, Satoshi Kagami, and Hirochika In-
oue. Real-time vision plus remote-brained design
opens new world for experimental robotics. In
Preprints of the Fourth Int. Symposium on Ezperi-
mental Robotics, pp. 68-73, 1995.

Masayuki Inaba, Fumio Kanehiro, Satoshi Kagami,
and Hirochika Inoue. Vision-equipped apelike robot
based on the remote-brained approach. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, pp.
2193-2198, 1995.

Masayuki Inaba. Extended vision with robot sensor
suit. In Preprints of the International Symposium on
Robotics Research, pp. 439447, 1995.

Rodney A. Brooks. A robust layered control system
for a mobile robot. IEEE Journal of Robotics and
Automation, Vol. RA-2, No. 1, pp. 14-23, 1986.

Tetsushi Oka. Function Integration for Autonomous
Robots by Building a Network of Behaviors. PhD
thesis, Graduate School of Engineering, University of
Tokyo, December 1995.

Pattie Maes, editor. Designing Autonomous Agents
(Theory and Practice from Biology to Engineering and
Back). MIT / Elsevier, 1990.

Masayuki Inaba, Satoshi Kagami, Fumio Kanehiro,
Ken'ichirou Nagasaka, and Hirochika Inoue. Mother
Operations to Evolve Embodied Robots Based on the
Remote-Brained Approach. In Proceedings of the 6th
International Workshop on the Synthesis and Simu-
lation of Living Systems, Artificial Life V. The MIT
Press, 1996.

Toshihiro Matsui and Satoshi Sekiguchi. Design and
implementation of parallel euslisp using multithread.
Information Processing Society, Vol. 36, No. 8, pp-
1885-1896, 1995.



